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INTRODUCTION 
 
Recent catastrophic events (Kobe, Northridge, Chi Chi and 
Armenian earthquakes, Hurricane Katrina, and the Asian 
tsunami) around the world have resulted in millions of 
damaged or destroyed homes and structures. The devastation  
to people’s cultural heritage and the imposed human  
sufferings will take years – possibly generations – to  
recover. 
 
A more immediate problem that faces many governments and 
international agencies is the need to address societal 
rehabilitation and infrastructure recovery. A key obstacle to 
these efforts is the validation of insurance claims. This could 
lead to social upheavals against the government in a worst case 
scenario. The proper and timely identification of fraud will 
reduce potential lawsuits and the pain and suffering of disaster 
victims, which can only be achieved by reliable forensic 
practices. 
 
The ultimate goal for all forensic work should be to provide 
accurate event reconstruction and evidence finding that can 
substantiate a logical and valid conclusion to the case. Hence, 
the ability of forensic engineers to quantify the quality of 
forensic work would be an important service to the clientele 
and society at large. This ability should be fostered in current 
engineering curricula, so that young engineers will be able to 
conduct quality investigations early in their careers. 
Unfortunately, there has been little work undertaken in both  
the areas of forensic quantification and quality forensic 
education. 
 
In this article, the authors review the current state of education 
in forensic curricula and propose a forensic quantification 
methodology. The authors demonstrate by example the 
potential of integrating forensic quantification into under-
graduate study. 

CURRENT FORENSIC PRACTICES AND EDUCATION 
 
Forensic comes from the Latin word forensus, which means of 
the forum. As a profession, the single most critical feature that 
distinguishes forensic scientists from other scientists is the 
expectation of court appearances and testimonies that offer 
their opinions and findings. In general, forensic science is 
science exercised on behalf of the law in the just resolution of 
conflict [1]. However, forensic engineering has been defined as 
follows: 
 

the application of engineering in the jurisprudence 
system requiring services of legally qualified 
professional engineers. Forensic engineering includes 
investigation of physical causes of accidents and 
other sources of claims and litigation, preparation of 
engineering reports, testimony at hearings in judicial 
proceedings, and rendition of advisory opinions to 
assist the resolution of disputes [2]. 

 
Important elements for forensic work are professionalism, legal 
knowledge and the capability to provide expert solutions to 
judicial proceedings [3]. 
 
Forensic work investigates facts that provide the legal process 
with a doubt-free explanation of the causality for failures, 
which is typically an inverse engineering procedure, where 
knowledge is accumulated by post-event evidence finding [4]. 
This approach contradicts the typical scientific approach of 
generating statistically reliable data to validate causal 
hypotheses and relies on deductive reasoning with very little 
experimental support. Additionally, the lack of in-between data 
prompts a heavy reliance on an engineer’s interdisciplinary 
expertise, training and reasoning ability. Therefore, current 
forensic practices often fail to produce complete multi-
disciplinary solutions to complex forensics problems, resulting 
in unreliable forensic conclusions.  
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The National Society of Professional Engineering has 
addressed this unreliability issue as a national concern [5]. 
Cohen et al indicated several needs of the forensic engineering 
community that may improve current practices, including the 
collection of historical data, the establishment of in-situ 
monitoring techniques and the generation of experimental 
results [6]. 
 
Forensic failure analysis is a critical component of forensic 
study, but is often a neglected subject in most civil engineering 
educational programmes. This was reflected consistently in 
national surveys [7][8][9]. Most efforts in educating failure 
analysis at the undergraduate level are introduced through case 
study courses, various authors, such as: Rendon-Herrero, 
Pietroforte, and Fowler and Delatte have demonstrated the 
successful implementation of case studies in courses to help 
students appreciate the significance of learning from failed 
structures [10-12]. Since most engineering disasters (building 
collapses, out-of-design anomalies) are subject to forensic 
investigation by engineers experienced in forensic methods of 
investigation. Tools that are typically useful for forensic 
studies may include accident reconstruction, event re-
enactment, code interpretations and failure analysis. Such 
investigations often go hand-in-hand with metallurgical and 
material science examination and with stress analysis. 
 
However, case studies do not necessarily promote inductive 
reasoning and encourage the active use of analytical tools that 
undergraduate students are familiar with. Hence, a teaching 
method that provides a direct linkage between failure and 
actual causality can be more intuitive for students learning 
forensic investigation techniques. Such a method requires a 
significant shift of paradigm in forensic education: educators 
must be creative in developing realistic interdisciplinary tools 
to help students learn to establish causal relationships between 
system performance and failures. 
 
FORENSIC QUANTIFICATION 
 
To quantify causality, a statistically sufficient data set is sought 
so that numerical quantifiers can be assigned to each known 
causal relation. Castaneda et al and Kaggwa first suggested 
using fuzzy logic as probabilistic indices for causality 
investigations [13][14]. Chen et al subsequently introduced the 
notion of quality forensic practice through probabilistic 
quantification [15]. It is obvious that such an approach requires 
the causality relationships for a certain failure type to be well-
defined with statistically sound failure cases. A large dataset is 
available for structural component failures (eg through 
laboratory testing); however, documented failures of complex 
structural systems are rare and non-causal. Hence, establishing 
inductive reasoning through hypotheses validation with 
experiments and modelling is essential to the proposed forensic 
quantification. 
 
The probability of identifying causality is defined as: 
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where ai is damage outcome due to a specific causal relation i. 
Ami is the measured outcome and A is the actual outcome. If a 
delta function is specified as: 
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then the actual causality probability ai with specific weighting 
coefficients bi can be differentiated from unrelated causalities 
kj with weighing coefficients zj as (with an error term εj): 
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If adequate data or case studies are available, they can be fused 
and integrated to explain causality. This process, although 
initially difficult and time-consuming, can be streamlined  
with accumulated knowledge. To ensure positive causality, the 
squared sum of the residuals S is utilised: 
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Likely causality can be established by optimisation relative to 
the weighting functions, thus: 
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In the cases where limited data are available, additional data 
can be generated using extensive structural modelling and 
numerical simulation. If standard procedures can be established 
to ensure consistent data generation, then positive causality can 
be established for a wide variety of problems. The proper 
scientific procedures for a true experiment-based investigation 
typically involve the following steps:  
 
• Observe structural failures; 
• Establish parameters for reproduction; 
• Establish failure hypotheses; 
• Construct structural replicas; 
• Make failure predictions based on hypotheses; 
• Test predictions by experiments on models; 
• Repeat the above steps [16]. 
 
EXAMPLE OF EDUCATION IMPLEMENTATION 
 
To demonstrate the causality calculation, an undergraduate 
student is engaged in independent study as a summer research 
project using the West Point Bridge Designer to generate data 
for a 21-member truss bridge to determine the possible failure 
modes under the traffic crossing of a single standard AASHTO 
H20-44 truckload [17]. This example is used to determine the 
causal relations for the failure of a complex system. Typical 
failures of a structural system may be due to one of four 
reasons: over-loading, inadequate capacity, environmental-
induced damages and boundary condition changes. 
 
By limiting the problem to a single truckloading case,  
this example demonstrates the possible failure modes as a 
function of structural members. Figure 1 shows how the  
bridge members are numbered in this study. The problem is 
further limited to constant material types (A 36 steel bridge 
members). So the only variable is the different member cross 
sections. 
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Figure 1: Bridge member numbers. 
 
West Point Bridge Designer (WPBD) is a popular program to 
educate students about the process in structural. The software 
realistically simulates metal bridge component behaviour using 
a moving truck-load and basic truss analysis procedures. The 
software assigns unit costs to construction, labour and 
materials; hence, students can learn about the economics of 
bridge design. The authors have used the software as an 
instructional tool in undergraduate structural analysis classes. 
Figure 2 shows the WPBD program with the standard truck 
crossing over the bridge and caused the bridge failure. The 
members under high stresses are at the front of the image. 
 

 
 
Figure 2: WPBD showing failed bridge during truck crossing 
[17]. 
 
The goal of the undergraduate research is to establish the 
failure probability for each member of the 21-member bridge 
and establish a most probable failure cause for the bridge. 
Figure 3 presents a probability tree for a failure calculation. 
The undergraduate student was asked to perform a Monte 
Carlo simulation using randomly generated members and their 
corresponding section properties. The selected members and 
material properties were then input into WPBD to generate 
fail/not fail scenarios. The total span of the bridge was 24 m 
long. The original design consisted of members of 120 mm × 
120 mm cross-section, except for members No. 11 and 21, 
which have 140 mm × 140 mm cross-sections. The cross-
sections are limited to a 10 mm × 10 mm to a 140 mm × 140 
mm range. A total of 207 simulations were conducted for this 
example problem. 
 
In this study, the individual member stiffness is the only 
variable and is, therefore, the only possible cause of failure. 
Since section stiffness reduction for a member is independent 
to other members, the weighting coefficient bi is considered 1 
for all damage cases. Likewise, for the non-causal terms, 
coefficients zj and errors εj are considered zero. Thus, the 

residual S calculation is greatly simplified. Table 1 shows the 
outcome failure probability for each of the members (Column 3). 
 

 
 

Figure 3: Probability tree for a failure calculation. 
 

Table 1: Failure probability for each bridge member. 
 

Mem No. 
Occur. 

Failure 
Outcome 

Causality 
Probability 

Square 
Sum 

Residuals 
S 

% 
Ratio/ 
Total S 

1 11 4 0.364 105.5 4.89 
2 13 7 0.538 102.0 4.73 
3 14 4 0.286 107.1 4.97 
4 10 5 0.500 102.8 4.76 
5 5 1 0.200 108.9 5.05 
6 8 1 0.125 110.5 5.12 
7 5 4 0.800 96.8 4.49 
8 11 8 0.727 98.2 4.55 
9 10 5 0.500 102.8 4.77 
10 7 2 0.286 107.1 4.97 
11 11 10 0.909 94.6 4.39 
12 18 9 0.500 102.8 4.77 
13 10 8 0.800 96.8 4.49 
14 8 1 0.125 110.5 5.12 
15 8 7 0.875 95.3 4.42 
16 10 4 0.400 104.8 4.86 
17 12 5 0.417 104.4 4.84 
18 21 5 0.238 108.1 5.01 
19 7 5 0.714 98.5 4.57 
20 3 1 0.333 106.2 4.92 
21 5 5 1.000 92.9 4.31 
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Since causality is defined as a function of the bridge members, 
causality probability is calculated for each member. Member 
21 is shown to be the most probable member to fail. However, 
expressing S as a percentage of the total S for the system, the 
small standard deviation of the percentage S values for all 
members indicates that they have nearly an equal likelihood of 
failure, which is expected for this simple scenario. The 
accuracy of the causality study will improve as more data sets 
become available. 
 
DISCUSSION 
 
The above example demonstrates how computer simulations 
can be used to teach undergraduate students failure analysis 
and causality quantification. Through a Monte Carlo 
simulation, students see which member of a particular type of 
truss bridge is most likely to fail. This approach can be 
extended to any structure type or analysis. Students can then 
apply this knowledge into actual forensic investigations to 
determine the most probable failure causes for any system type. 
For actual forensic investigation, students can assign 
reasonable weighing coefficients to each causal relation. 
Computer simulation is not the only approach to systematically 
generate database: Chen et al suggest the use of massive scaled 
structural models or replicas for generating more failure data 
[15]. This contrasts to traditional forensic education using case 
studies; students can use this newer approach to delineate the 
probable causes of failure to unrelated causalities. 
 
Good forensic engineering practice demands a reasonably good 
relationship between failure and its causes; the proposed 
approach represents a significant shift in the forensic education 
paradigm in that a true scientific-based investigation that relies 
on the generation of a statistically sound sample population of 
failure cases is established. The outcome of this investigation 
should be supported with strong evidence that is supported by 
not only logic, but also scientifically sound quantifiers. While 
real-life failure data are scarce, forensic quantification studies 
can be conducted using structural modelling. It should be 
recognised, however, that the proposed approach is more 
difficult to implement for structures with parameters that may 
be unknown or unquantifiable.  
 
Some additional reasons why experimentally-based studies 
may be difficult to implement in forensic engineering curricula 
are as follows: 
 
• Most systems are difficult to define; 
• Few systems are simple enough to reproduce for repetitive 

experiments;  
• No universal monitoring instrumentation that allows 

synchronised multiple-level sensing and automated data 
fusion is available currently. 

 
CONCLUSIONS 
 
To promote quality forensic engineering practices (education), 
the authors suggest causality quantification using probabilistic 
indices from the generation of a large statistically-sound data 
base. An example of curricular implementation is described  
 

where the West Point Bridge Designer has been used in 
undergraduate research to generate 207 failure cases of a truss 
bridge. Causality quantification is then studied for each 
structural member. Using this approach, students learn to 
delineate related and unrelated causalities, and determine the 
most probable failure scenarios. By contrast to traditional 
forensic failure studies that use case histories, this approach 
represents a true scientific forward analysis and allows students 
to practice logical inductive reasoning, instead of the more 
deductive approach that is traditionally applied to forensic 
investigations. 
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